F(5)=2x^2+4x+1

Simple and best practice solution for F(5)=2x^2+4x+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for F(5)=2x^2+4x+1 equation:



(5)=2F^2+4F+1
We move all terms to the left:
(5)-(2F^2+4F+1)=0
We get rid of parentheses
-2F^2-4F-1+5=0
We add all the numbers together, and all the variables
-2F^2-4F+4=0
a = -2; b = -4; c = +4;
Δ = b2-4ac
Δ = -42-4·(-2)·4
Δ = 48
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{48}=\sqrt{16*3}=\sqrt{16}*\sqrt{3}=4\sqrt{3}$
$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4\sqrt{3}}{2*-2}=\frac{4-4\sqrt{3}}{-4} $
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4\sqrt{3}}{2*-2}=\frac{4+4\sqrt{3}}{-4} $

See similar equations:

| 4.4(x+2)-7=4.4x+1.8 | | 1/2=2/5c=-3 | | m×2.8-4.9=7.11 | | 3(x-3)=3x+9 | | 7(x-4)+3=21 | | n/5-3/n=1/5 | | (8y+42)=(5y-9)+90 | | -.02x+500=0 | | 53x=27+54x | | (6x-25)+(12x-43)=180 | | -5(r+6)=-99 | | -1/3d=-12 | | -x+4+7x=-2+3x+6 | | -6(7-×)=10(x+3)-23 | | (8y+42)+(5y-9)=180 | | 40x^2+20x=-24 | | X^2+y^2=17X+4y=0 | | 12=6/5x | | 2b+b=-6(b-7)+7(2b-1) | | 2/3x+1=3/4 | | .1.2+2.5x=2.7x+0.7 | | (3x-2)^=16x^ | | 3(x-2)=2(x-6 | | -2(8k-8)-4=-6(k-7) | | 3(c-2)=2(c-6 | | 5x+10=-3.6 | | 2=-2(r-1) | | 42/16x=24/12x | | -5(4x-2)=-2(3+6x | | t^-2t+9=0 | | 61+7x=-65 | | 0.33m=12–m |

Equations solver categories